
Supporting Mobile Swarm Robotics
in Low Power and Lossy Sensor Networks

Kevin Andrea	 	 kandrea@gmu.edu
Robert Simon	 	 simon@gmu.edu
Sean Luke	 	 	 sean@cs.gmu.edu

Department of Computer Science
George Mason University

Washington, DC

Supporting Self-organizing Sensor Swarm Systems

• Wireless Low Power and Lossy Networks
(LLNs) are becoming ubiquitous

• They form a key portion of the Internet-of-
Things landscape

• A tremendous source for providing
situational awareness for sensor swarms

• Question:
How can we make LLN protocols work
with mobile sensor swarms?

Network

Router

Multihop
Low Power
Wireless
Network

LLN Characteristics

• Targeted class of nodes have a multi-point to point communication pattern

• Nodes sense and process data and communicate up and down a tree

• Meant for very resource constrained hardware

• Tmote Sky class nodes are ultra-low power wireless hardware

• 16 bit, 8 Mhz MSP430 microcontroller

• 10K RAM, 48K Flash

MoRoMi: Mobile Robotic Multi-sink

• Meant to support swarms of autonomous mobile robots.

• An intentionally thin wrapper layer over RPL within an open swarm robotics
architecture

• RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
IETF Standard (RFC 6550).

• Goal: to maintain compliance with evolving networking standards while
providing support for complex, dynamically changing environments such as
mobile swarm robotics.

The FlockBots

• Off-the-shelf open robot architecture

• Controllers:
Arduino Uno or Mega, Raspberry Pi 2

• Sensors:
Five Sharp IR infrared range sensors,
two bump sensors, wheel encoders,
tilt-servoed camera

• Effectors:
Two wheels (differential drive), gripper, push bar,
camera servo, display

• Uses an attached Tmote Sky wireless sensor mote for LLN interaction

Integrating Robotic Swarms into RPL

• Wireless channel quality is highly variable

• Due to high packet loss rates routes break frequently

• LLN routing protocols constantly update their best path up a tree to the sink
(the root)

• Uses sink-oriented gradient routing and Directed Acyclic Graph (DAG)

• Each DAG instance is specified by its sink node

• Sinks are advertised to the network via a Destination Oriented DAG
Information Object (DIO)

• Robotic swarms must interact with LLNs via a new type of DAG

RPL Network Destination-Oriented
Directed Acyclic Graph (DODAG)

Senders

Edges represent
Parent relationship2

Sink

3

4 5

7

810

6 9

Basic Challenge

• RPL and similar protocols assume a single sink

• We require multiple mobile sinks

• LLN protocols like RPL often experience long convergence times

• Mobile nodes need to limit these times

• To ensure reliability RPL uses a trickle timer for automatic DIO retransmission

• May pose dynamic convergence issues

Routing in MoRoMi

• Establish, on-demand, gradients towards
mobile sinks.

• As each new sink (e.g, each robot), enters the
environment, it transmits a special DIO to
announce a new Instance of the RPL network

• Frequent tree parent changes indicate robotic
mobility

• Modify the retransmission timers to
correctly support this movement

Static
Sink

2

3

4

56: Mobile
Robot

MOROMI Network Scenario

• Typical scenario:

• Robot enters field

• Robot sends DIO

• Robot dwells for some time

• Robot moves and network must reform

Static
Sink

2

3

4

5

6: Mobile
Robot

Disruption Modes

Network reforming
causes temporary

routing loop

• As the robot moves, its network instance can become
disrupted (the static sink's instance stays intact).

• We are interested in analyzing (and minimizing) disruption.

Static
Sink

2

3

4

5

6: Mobile
Robot

Evaluation

• Performance is judged by

• Time for routing to stabilize

• Packet Delivery Ratio (PDR)

• Two evaluations:
Physical Implementation and
Simulation

• For simulation, used Cooja
and wrote a new tool, called
Tamara, to rapidly generate
and evaluate swarm-LLN
interactions

• Considered both a linear network
and a star network

Linear Network Evaluation

• Models applications such as
intrusion detection, pipeline
infrastructure maintenance or
equipment heath status

• 8 Phases of operations

• Phases 1, 4 and 7 require
convergence

1. Initial time after activation for the
network to form

2. Initial configuration operation

3. Movement to the dwell location

4. Time to reform at the dwell location

5. Post-convergence operation at the
dwell location

6. Movement back to the initial
position

7. Time to reform at the initial location

8. Post-convergence operation at the
initial location.

Convergence Times: Implementation vs. Simulation

1 4 7

0

100

200

300

Convergence Times By Phase (Linear Topology)
5 Motes, 2 Sinks (Mobile Sink Rates)

3600s duration, 800s start, 420s dwell, 20 sec/pkt

Live Implementation

Simulation

Convergence Phases (1,4,7)

T
im

e
(s

)

Convergence Times by Mobility Speed

1 4 7

0

200

400

600

800

Convergence Times By Phase (Linear Topology)
10 Motes, 2 Sinks (Mobile Sink Rates)

4000s duration, 800s start, 420s dwell, 20 sec/pkt

1m/s Mobility Speed

2m/s Mobility Speed

4m/s Mobility Speed

Convergence Phases (1,4,7)

T
im

e
(s

)

PDR by Mobility

1 2 3 4 5 6 7 8

0

50

100

150

Packet Delivery Rate - Mobile Instance (Linear Topology)

4000s duration, 800s start, 1000s dwell, 20 sec/pkt

1m/s Mobility Speed

2m/s Mobility Speed

4m/s Mobility Speed

Phase

P
D

R

Conclusions and Observations

• Able to successfully build a thin software layer for swarm-LLN communication
without breaking standards

• Connectivity demonstrated

• Time to converge remains a challenge: partitions lasted up to ten minutes

• However, in all cases, network reconverged

• Issues

• Network reformation must be faster and more robust to better support
large numbers of robots

• The network is a tree rather than a graph, so there is high load on the
sink. How can we reduce this while staying within the memory/
computational constraints of the motes?

Supporting Mobile Swarm Robotics
in Low Power and Lossy Sensor Networks

Kevin Andrea	 	 kandrea@gmu.edu
Robert Simon	 	 simon@cs.gmu.edu
Sean Luke	 	 	 sean@cs.gmu.edu

Department of Computer Science
George Mason University

Washington, DC

